Sklearn实现决策树(Decision Tree)分类

发布于 / 机器学习 / Comments Off on Sklearn实现决策树(Decision Tree)分类

0、决策树简介

决策树是机器学习的一个重要算法,决策树就是像下面这样的树:

blob.png

每个节点有属性的要求,根据不同的属性有不同的分支,叶子节点表示预测结果

1、使用sklearn构建决策树

在Jupyter Notebook导入相关库:

from sklearn.datasets import load_iris
from sklearn import tree
import sys
import os  
from IPython.display import Image  
import pydotplus 
import pandas as pd

IPython.display的Image和pydotplus是为了可视化生成的决策树。没安装pydotpplus可以使用pip3命令安装。

接着用sklearn自带的鸢尾花数据:

iris = load_iris()

嗯。。。让数据好看点?

table = pd.DataFrame(iris['data'])
table['target'] = iris['target']    # target => ['setosa', 'versicolor', 'virginica']
table.columns = ['sepal length (cm)','sepal width (cm)','petal length (cm)','petal width (cm)', 'target']
print(table)

blob.png

数据集总共150个花,总共三种花,target表示了种类号,每个花有四个特征。下面利用这个数据构建决策树

# 创建决策树对象,使用信息熵作为依据
clf = tree.DecisionTreeClassifier(criterion='entropy')
# fit方法分类。features为iris.data,labels为iris.target
clf = clf.fit(iris.data, iris.target)

接着可视化一下这个树,看看它是什么亚子的

# 可视化
dot_data = tree.export_graphviz(clf, feature_names=iris.feature_names,  class_names=iris.target_names, filled=True)  
graph = pydotplus.graph_from_dot_data(dot_data)  
Image(graph.create_png())

如果报错:GraphViz's executables not found

你需要使用apt或者yum安装GraphViz。Windows需要下载一个工具,具体请百度一下。

nice!

blob.png

这就是生成的决策树,entropy表示的是熵,samples表示该节点所含样本数量,value表示不同类别的个数有多少。

这样,就完成了决策树的搭建。

转载原创文章请注明,转载自: 斐斐のBlog » Sklearn实现决策树(Decision Tree)分类
评论已关闭