本文的来源于作者为pf4919501所写的C语言链表各类操作详解,为了更加易懂,在原来的基础上做了一些小改动并增加了一些说明。
C代码
#include "stdlib.h"
#include "stdio.h"
#define NULL 0
#define LEN sizeof(struct student)
struct student {
int num; //学号
float score; //分数,其他信息可以继续在下面增加字段
struct student *next; //指向下一节点的指针
};
int n; //节点总数
这样,链表的每一个单元就定义完了。每一个单元像车厢一样,通过*next这个"挂钩"连接在了一起。
下面这个函数用来创建新的链表。
/*
==========================
功能:创建n个节点的链表
返回:指向链表表头的指针
==========================
*/
struct student *Create() { //定义一个函数,返回类型为struct student的指针
struct student *head; //链表头的地址
struct student *p1 = NULL; //p1保存创建的新节点的地址
struct student *p2 = NULL; //p2保存原链表最后一个节点的地址
n = 0; //创建前链表的节点总数为0:空链表
p1 = (struct student *) malloc (LEN); //申请一块struct student大小的内存,开辟一个新的节点
p2 = p1; //p2先把这个节点的指针保存,备用
if(p1==NULL) { //malloc返回NULL表示分配内存失败
printf ("无法分配动态内存!");
return NULL; //返回NULL表示失败
} else { //节点开辟成功
head = NULL; //此时链表只有一个节点,这个节点也是最后一个节点,所以表头暂时指向NULL
printf ("请输入第%d个节点的num和score", n + 1);
scanf ("%d %f", &(p1->num), &(p1->score)); //将输入的数据保存到第一个节点中
}
while(p1->num != 0) { //只要学号不为0,就继续录入下一个节点
n += 1; //节点总数增加1个
if(n == 1) { //如果节点总数是1,则head指向刚创建的节点p1
head = p1;
p2->next = NULL; //此时的p2就是p1,也就是p1->next指向NULL。
} else {
p2->next = p1; //指向上次下面刚刚开辟的新节点
}
p2 = p1; //把p1的地址给p2保留,然后p1产生新的节点
p1 = (struct student *) malloc (LEN);
printf ("Please input %d node -- num,score: ", n + 1);
scanf ("%d %f", &(p1->num), &(p1->score));
}
p2->next = NULL; //此句就是根据单向链表的最后一个节点要指向NULL
free(p1); //p1->num为0的时候跳出了while循环,并且释放p1
p1 = NULL; //特别不要忘记把释放的变量清空置为NULL,否则就变成"野指针",即地址不确定的指针
return head; //返回创建链表的头指针
}
这样,链表就生成成功了,我们得到了表头(head)的地址,表尾的*next指针为NULL。通过表头中的*next指针可以得到第二个节点的地址,通过第二个节点的*next可以得到第三个节点的地址。。。依次类推,可以操作整个表的所有数据。例如输出整个表的所有数据:
void Print(struct student *head)
{
struct student *p; //定义一个临时指针,用来指向要处理的节点
printf ("第%d个节点存储的数据为", n);
p = head; //先让临时指针指向表头,即从表头开始处理数据
if(head != NULL) //只要不是空链表,就输出链表中所有节点
{
printf("表头的地址是 0x%x\n", head); //输出头指针指向的地址
do
{
printf ("%o %d %5.1f %o\n", p, p->num, p->score, p->next); //输出该节点的数据
p = p->next; //移到下一个节点
}
while (p != NULL); //只要指针p不等于NULL(不是表尾) ,继续循环
}
}
当然,你可以不输出他们,可以return他们的值(void需要修改),来做别的用途。例如得到学号为xxx的节点的数据,我们可以加一个if判断,如果学号是我们所需要的,那么返回我们所需要的东西。
这样,我们成功获取到了表中的所有数据。下面来试着删除表中的数据。
struct student *Del (struct student *head, int num) //传递的变量分别为,表头指针,欲删除节点的num数据
{
struct student *p1; //p1保存当前需要检查的节点的地址
struct student *p2; //p2保存当前检查过的节点的地址
if (head == NULL) //判断是否是空表,空表要给出错误信息
{
printf ("空表!!");
return head;
}
//下面代码的作用是找到要删除的节点
p1 = head; //将检查地址移动到head,即从表头开始检查
while (p1->num != num && p1->next != NULL) //p1指向的节点不是所要查找的,并且它不是最后一个节点,就继续往下找
{
p2 = p1; //保存当前节点的地址
p1 = p1->next; //后移一个节点
}
if(p1->num==num) //找到了。
{
if (p1 == head) //如果要删除的节点是第一个节点
{
head = p1->next; //头指针指向第一个节点的后一个节点,也就是第二个节点。这样第一个节点就不在链表中,即删除
}
else //如果是其它节点,则让原来指向当前节点的指针,指向它的下一个节点,完成删除
{
p2->next = p1->next;
}
free (p1); //释放当前节点,防止内存泄漏
p1 = NULL;
printf ("删除 %ld 成功\n", num);
n -= 1; //节点总数减1个
}
else //没有找到
{
printf ("%ld 没有找到\n", num);
}
return head; //因为节点可能是头节点,所以要返回新的表头
}
通过查找,修改目标节点的前一个节点的*next指向目标节点的下一个节点,释放目标节点的内存,这样就可以删除链表中指定元素的节点。当然你也可以改写成删除第几个节点,甚至删除地址为xxx的节点(虽然并没有卵用。),下面看看如何插入节点。
struct student *Insert (struct student *head, int num, struct student *node) //传递的变量为表头指针,目标位置的num数据,欲插入的节点的指针
{
struct student *p1; //p1保存当前需要检查的节点的地址
if (head == NULL) //判断是否空表
{
head = node;
node->next = NULL;
n += 1;
return head;
}
p1 = head;
while(p1->num != num && p1->next != NULL) //p1指向的节点不是所要查找的,并且它不是最后一个节点,继续往下找
{
p1 = p1->next; //后移一个节点
}
if (p1->num==num) //找到了(结合图示8理解)
{
node->next = p1->next; //显然node的下一节点是原p1的next
p1->next = node; //插入后,原p1的下一节点就是要插入的node
n += 1; //节点总数增加1个
}
else
{
printf ("\n%ld not been found!\n", num);
}
return head;
}
这个和删除比较类似,注释部分就不再特别详细说明了。
以上就是C语言链表的基本内容,下面是几个链表高级应用的例子。仅供参考。
1,反序链表(将链表倒过来)
/*
==========================
功能:反序节点
(链表的头变成链表的尾,链表的尾变成头)
返回:指向链表表头的指针
==========================
*/
struct student *Reverse (struct student *head)
{
struct student *p; //临时存储
struct student *p1; //存储返回结果
struct student *p2; //源结果节点一个一个取
p1 = NULL; //开始颠倒时,已颠倒的部分为空
p2 = head; //p2指向链表的头节点
while(p2 != NULL)
{
p = p2->next;
p2->next = p1;
p1 = p2;
p2 = p;
}
head = p1;
return head;
}
2,对链表进行选择性排序
/*
==========================
功能:选择排序(由小到大)
返回:指向链表表头的指针
==========================
*/
struct student *SelectSort (struct student *head)
{
struct student *first; //排列后有序链的表头指针
struct student *tail; //排列后有序链的表尾指针
struct student *p_min; //保留键值更小的节点的前驱节点的指针
struct student *min; //存储最小节点
struct student *p; //当前比较的节点
first = NULL;
while(head != NULL) //在链表中找键值最小的节点
{
//注意:这里for语句就是体现选择排序思想的地方
for (p = head, min = head; p->next != NULL; p = p->next) //循环遍历链表中的节点,找出此时最小的节点
{
if (p->next->num < min->num) //找到一个比当前min小的节点
{
p_min = p; //保存找到节点的前驱节点:显然p->next的前驱节点是p
min = p->next; //保存键值更小的节点
}
}
//上面for语句结束后,就要做两件事;一是把它放入有序链表中;二是根据相应的条件判断,安排它离开原来的链表
//第一件事
if (first == NULL) //如果有序链表目前还是一个空链表
{
first = min; //第一次找到键值最小的节点
tail = min; //注意:尾指针让它指向最后的一个节点
}
else //有序链表中已经有节点
{
tail->next = min; //把刚找到的最小节点放到最后,即让尾指针的next指向它
tail = min; //尾指针也要指向它
}
//第二件事
if (min == head) //如果找到的最小节点就是第一个节点
{
head = head->next; //显然让head指向原head->next,即第二个节点,就OK
}
else //如果不是第一个节点
{
p_min->next = min->next; //前次最小节点的next指向当前min的next,这样就让min离开了原链表
}
}
if (first != NULL) //循环结束得到有序链表first
{
tail->next = NULL; //单向链表的最后一个节点的next应该指向NULL
}
head = first;
return head;
}
3,对链表进行插入排序
/*
==========================
功能:直接插入排序(由小到大)
返回:指向链表表头的指针
==========================
*/
struct student *InsertSort (struct student *head)
{
struct student *first; //为原链表剩下用于直接插入排序的节点头指针
struct student *t; //临时指针变量:插入节点
struct student *p,*q; //临时指针变量
first = head->next; //原链表剩下用于直接插入排序的节点链表:可根据图12来理解
head->next = NULL; //只含有一个节点的链表的有序链表:可根据图11来理解
while(first != NULL) //遍历剩下无序的链表
{
//注意:这里for语句就是体现直接插入排序思想的地方
for (t = first, q = head; ((q != NULL) && (q->num < t->num)); p = q, q = q->next); //无序节点在有序链表中找插入的位置
//退出for循环,就是找到了插入的位置,应该将t节点插入到p节点之后,q节点之前
//注意:按道理来说,这句话可以放到下面注释了的那个位置也应该对的,但是就是不能。原因:你若理解了上面的第3条,就知道了
//下面的插入就是将t节点即是first节点插入到p节点之后,已经改变了first节点,所以first节点应该在被修改之前往后移动,不能放到下面注释的位置上去
first = first->next; //无序链表中的节点离开,以便它插入到有序链表中
if (q == head) //插在第一个节点之前
{
head = t;
}
else //p是q的前驱
{
p->next = t;
}
t->next = q; //完成插入动作
//first = first->next;
}
return head;
}
4,冒泡排序
/*
==========================
功能:冒泡排序(由小到大)
返回:指向链表表头的指针
==========================
*/
struct student *BubbleSort (struct student *head)
{
struct student *endpt; //控制循环比较
struct student *p; //临时指针变量
struct student *p1,*p2;
p1 = (struct student *) malloc (LEN);
p1->next = head; //注意理解:我们增加一个节点,放在第一个节点的前面,主要是为了便于比较。因为第一个节点没有前驱,我们不能交换地址
head = p1; //让head指向p1节点,排序完成后,我们再把p1节点释放掉
for (endpt = NULL; endpt != head; endpt = p) //结合第6点理解
{
for (p = p1 = head; p1->next->next != endpt; p1 = p1->next)
{
if (p1->next->num > p1->next->next->num) //如果前面的节点键值比后面节点的键值大,则交换
{
p2 = p1->next->next; //结合第1点理解
p1->next->next = p2->next; //结合第2点理解
p2->next = p1->next; //结合第3点理解
p1->next = p2; //结合第4点理解
p = p1->next->next; //结合第6点理解
}
}
}
p1 = head; //把p1的信息去掉
head = head->next; //让head指向排序后的第一个节点
free (p1); //释放p1
p1 = NULL; //p1置为NULL,保证不产生"野指针",即地址不确定的指针变量
return head;
}
5,插入有序链表
/*
==========================
功能:插入有序链表的某个节点的后面(从小到大)
返回:指向链表表头的指针
==========================
*/
struct student *SortInsert (struct student *head, struct student *node)
{
struct student *p; //p保存当前需要检查的节点的地址
struct student *t; //临时指针变量
if (head == NULL) //处理空的有序链表
{
head = node;
node->next = NULL;
n += 1; //插入完毕,节点总数加
return head;
}
p = head; //有序链表不为空
while(p->num < node->num && p != NULL) //p指向的节点的学号比插入节点的学号小,并且它不等于NULL
{
t = p; //保存当前节点的前驱,以便后面判断后处理
p = p->next; //后移一个节点
}
if (p == head) //刚好插入第一个节点之前
{
node->next = p;
head = node;
}
else //插入其它节点之后
{
t->next = node; //把node节点加进去
node->next = p;
}
n += 1; //插入完毕,节点总数加1
return head;
}
以上就是链表常用的几种操作。来一份大集合吧,链表操作的完整代码
#include "stdlib.h"
#include "stdio.h"
#define LEN sizeof(struct student)
struct student
{
int num; //学号
float score; //分数,其他信息可以继续在下面增加字段
struct student *next; //指向下一节点的指针
};
int n; //节点总数
/*
==========================
功能:创建n个节点的链表
返回:指向链表表头的指针
==========================
*/
struct student *Create()
{
struct student *head; //头节点
struct student *p1 = NULL; //p1保存创建的新节点的地址
struct student *p2 = NULL; //p2保存原链表最后一个节点的地址
n = 0; //创建前链表的节点总数为0:空链表
p1 = (struct student *) malloc (LEN); //开辟一个新节点
p2 = p1; //如果节点开辟成功,则p2先把它的指针保存下来以备后用
if(p1==NULL) //节点开辟不成功
{
printf ("\nCann't create it, try it again in a moment!\n");
return NULL;
}
else //节点开辟成功
{
head = NULL; //开始head指向NULL
printf ("Please input %d node -- num,score: ", n + 1);
scanf ("%d %f", &(p1->num), &(p1->score)); //录入数据
}
while(p1->num != 0) //只要学号不为0,就继续录入下一个节点
{
n += 1; //节点总数增加1个
if(n == 1) //如果节点总数是1,则head指向刚创建的节点p1
{
head = p1;
p2->next = NULL; //此时的p2就是p1,也就是p1->next指向NULL。
}
else
{
p2->next = p1; //指向上次下面刚刚开辟的新节点
}
p2 = p1; //把p1的地址给p2保留,然后p1产生新的节点
p1 = (struct student *) malloc (LEN);
printf ("Please input %d node -- num,score: ", n + 1);
scanf ("%d %f", &(p1->num), &(p1->score));
}
p2->next = NULL; //此句就是根据单向链表的最后一个节点要指向NULL
free(p1); //p1->num为0的时候跳出了while循环,并且释放p1
p1 = NULL; //特别不要忘记把释放的变量清空置为NULL,否则就变成"野指针",即地址不确定的指针
return head; //返回创建链表的头指针
}
/*
===========================
功能:输出节点
返回: void
===========================
*/
void Print(struct student *head)
{
struct student *p;
printf ("\nNow , These %d records are:\n", n);
p = head;
if(head != NULL) //只要不是空链表,就输出链表中所有节点
{
printf("head is %o\n", head); //输出头指针指向的地址
do
{
/*
输出相应的值:当前节点地址、各字段值、当前节点的下一节点地址。
这样输出便于读者形象看到一个单向链表在计算机中的存储结构,和我们
设计的图示是一模一样的。
*/
printf ("%o %d %5.1f %o\n", p, p->num, p->score, p->next);
p = p->next; //移到下一个节点
}
while (p != NULL);
}
}
/*
==========================
功能:删除指定节点
(此例中是删除指定学号的节点)
返回:指向链表表头的指针
==========================
*/
struct student *Del (struct student *head, int num)
{
struct student *p1; //p1保存当前需要检查的节点的地址
struct student *p2; //p2保存当前检查过的节点的地址
if (head == NULL) //是空链表(结合图3理解)
{
printf ("\nList is null!\n");
return head;
}
//定位要删除的节点
p1 = head;
while (p1->num != num && p1->next != NULL) //p1指向的节点不是所要查找的,并且它不是最后一个节点,就继续往下找
{
p2 = p1; //保存当前节点的地址
p1 = p1->next; //后移一个节点
}
if(p1->num==num) //找到了。(结合图4、5理解)
{
if (p1 == head) //如果要删除的节点是第一个节点
{
head = p1->next; //头指针指向第一个节点的后一个节点,也就是第二个节点。这样第一个节点就不在链表中,即删除
}
else //如果是其它节点,则让原来指向当前节点的指针,指向它的下一个节点,完成删除
{
p2->next = p1->next;
}
free (p1); //释放当前节点
p1 = NULL;
printf ("\ndelete %ld success!\n", num);
n -= 1; //节点总数减1个
}
else //没有找到
{
printf ("\n%ld not been found!\n", num);
}
return head;
}
//销毁链表
void DestroyList(struct student *head)
{
struct student *p;
if(head==NULL)
return 0;
while(head)
{
p=head->next;
free(head);
head=p;
}
return 1;
}
/*
==========================
功能:插入指定节点的后面
(此例中是指定学号的节点)
返回:指向链表表头的指针
==========================
*/
struct student *Insert (struct student *head, int num, struct student *node)
{
struct student *p1; //p1保存当前需要检查的节点的地址
if (head == NULL) //(结合图示7理解)
{
head = node;
node->next = NULL;
n += 1;
return head;
}
p1 = head;
while(p1->num != num && p1->next != NULL) //p1指向的节点不是所要查找的,并且它不是最后一个节点,继续往下找
{
p1 = p1->next; //后移一个节点
}
if (p1->num==num) //找到了(结合图示8理解)
{
node->next = p1->next; //显然node的下一节点是原p1的next
p1->next = node; //插入后,原p1的下一节点就是要插入的node
n += 1; //节点总数增加1个
}
else
{
printf ("\n%ld not been found!\n", num);
}
return head;
}
/*
==========================
功能:反序节点
(链表的头变成链表的尾,链表的尾变成头)
返回:指向链表表头的指针
==========================
*/
struct student *Reverse (struct student *head)
{
struct student *p; //临时存储
struct student *p1; //存储返回结果
struct student *p2; //源结果节点一个一个取
p1 = NULL; //开始颠倒时,已颠倒的部分为空
p2 = head; //p2指向链表的头节点
while(p2 != NULL)
{
p = p2->next;
p2->next = p1;
p1 = p2;
p2 = p;
}
head = p1;
return head;
}
/*
==========================
功能:选择排序(由小到大)
返回:指向链表表头的指针
==========================
*/
struct student *SelectSort (struct student *head)
{
struct student *first; //排列后有序链的表头指针
struct student *tail; //排列后有序链的表尾指针
struct student *p_min; //保留键值更小的节点的前驱节点的指针
struct student *min; //存储最小节点
struct student *p; //当前比较的节点
first = NULL;
while(head != NULL) //在链表中找键值最小的节点
{
//注意:这里for语句就是体现选择排序思想的地方
for (p = head, min = head; p->next != NULL; p = p->next) //循环遍历链表中的节点,找出此时最小的节点
{
if (p->next->num < min->num) //找到一个比当前min小的节点
{
p_min = p; //保存找到节点的前驱节点:显然p->next的前驱节点是p
min = p->next; //保存键值更小的节点
}
}
//上面for语句结束后,就要做两件事;一是把它放入有序链表中;二是根据相应的条件判断,安排它离开原来的链表
//第一件事
if (first == NULL) //如果有序链表目前还是一个空链表
{
first = min; //第一次找到键值最小的节点
tail = min; //注意:尾指针让它指向最后的一个节点
}
else //有序链表中已经有节点
{
tail->next = min; //把刚找到的最小节点放到最后,即让尾指针的next指向它
tail = min; //尾指针也要指向它
}
//第二件事
if (min == head) //如果找到的最小节点就是第一个节点
{
head = head->next; //显然让head指向原head->next,即第二个节点,就OK
}
else //如果不是第一个节点
{
p_min->next = min->next; //前次最小节点的next指向当前min的next,这样就让min离开了原链表
}
}
if (first != NULL) //循环结束得到有序链表first
{
tail->next = NULL; //单向链表的最后一个节点的next应该指向NULL
}
head = first;
return head;
}
/*
==========================
功能:直接插入排序(由小到大)
返回:指向链表表头的指针
==========================
*/
struct student *InsertSort (struct student *head)
{
struct student *first; //为原链表剩下用于直接插入排序的节点头指针
struct student *t; //临时指针变量:插入节点
struct student *p,*q; //临时指针变量
first = head->next; //原链表剩下用于直接插入排序的节点链表:可根据图12来理解
head->next = NULL; //只含有一个节点的链表的有序链表:可根据图11来理解
while(first != NULL) //遍历剩下无序的链表
{
//注意:这里for语句就是体现直接插入排序思想的地方
for (t = first, q = head; ((q != NULL) && (q->num < t->num)); p = q, q = q->next); //无序节点在有序链表中找插入的位置
//退出for循环,就是找到了插入的位置,应该将t节点插入到p节点之后,q节点之前
//注意:按道理来说,这句话可以放到下面注释了的那个位置也应该对的,但是就是不能。原因:你若理解了上面的第3条,就知道了
//下面的插入就是将t节点即是first节点插入到p节点之后,已经改变了first节点,所以first节点应该在被修改之前往后移动,不能放到下面注释的位置上去
first = first->next; //无序链表中的节点离开,以便它插入到有序链表中
if (q == head) //插在第一个节点之前
{
head = t;
}
else //p是q的前驱
{
p->next = t;
}
t->next = q; //完成插入动作
//first = first->next;
}
return head;
}
/*
==========================
功能:冒泡排序(由小到大)
返回:指向链表表头的指针
==========================
*/
struct student *BubbleSort (struct student *head)
{
struct student *endpt; //控制循环比较
struct student *p; //临时指针变量
struct student *p1,*p2;
p1 = (struct student *) malloc (LEN);
p1->next = head; //注意理解:我们增加一个节点,放在第一个节点的前面,主要是为了便于比较。因为第一个节点没有前驱,我们不能交换地址
head = p1; //让head指向p1节点,排序完成后,我们再把p1节点释放掉
for (endpt = NULL; endpt != head; endpt = p) //结合第6点理解
{
for (p = p1 = head; p1->next->next != endpt; p1 = p1->next)
{
if (p1->next->num > p1->next->next->num) //如果前面的节点键值比后面节点的键值大,则交换
{
p2 = p1->next->next; //结合第1点理解
p1->next->next = p2->next; //结合第2点理解
p2->next = p1->next; //结合第3点理解
p1->next = p2; //结合第4点理解
p = p1->next->next; //结合第6点理解
}
}
}
p1 = head; //把p1的信息去掉
head = head->next; //让head指向排序后的第一个节点
free (p1); //释放p1
p1 = NULL; //p1置为NULL,保证不产生"野指针",即地址不确定的指针变量
return head;
}
/*
==========================
功能:插入有序链表的某个节点的后面(从小到大)
返回:指向链表表头的指针
==========================
*/
struct student *SortInsert (struct student *head, struct student *node)
{
struct student *p; //p保存当前需要检查的节点的地址
struct student *t; //临时指针变量
if (head == NULL) //处理空的有序链表
{
head = node;
node->next = NULL;
n += 1; //插入完毕,节点总数加
return head;
}
p = head; //有序链表不为空
while(p->num < node->num && p != NULL) //p指向的节点的学号比插入节点的学号小,并且它不等于NULL
{
t = p; //保存当前节点的前驱,以便后面判断后处理
p = p->next; //后移一个节点
}
if (p == head) //刚好插入第一个节点之前
{
node->next = p;
head = node;
}
else //插入其它节点之后
{
t->next = node; //把node节点加进去
node->next = p;
}
n += 1; //插入完毕,节点总数加1
return head;
}
/*
以上函数的测试程序:
提示:根据测试函数的不同注释相应的程序段,这也是一种测试方法。
*/
int main(void)
{
struct student *head;
struct student *stu;
int thenumber;
// 测试Create()、Print()
head = Create();
Print(head);
//测试Del()
printf("\nWhich one delete: ");
scanf("%d",&thenumber);
head = Del(head,thenumber);
Print(head);
//测试Insert()
stu = (struct student *)malloc(LEN);
printf("\nPlease input insert node -- num,score: ");
scanf("%d %f",&stu->num,&stu->score);
printf("\nInsert behind num: ");
scanf("%d",&thenumber);
head = Insert(head,thenumber,stu);
Print(head);
//测试Reverse()
printf("\nReverse the LinkList: \n");
head = Reverse(head);
Print(head);
//测试SelectSort()
printf("\nSelectSort the LinkList: \n");
head = SelectSort(head);
Print(head);
//测试InsertSort()
printf("\nInsertSort the LinkList: \n");
head = InsertSort(head);
Print(head);
//测试BubbleSort()
printf("\nBubbleSort the LinkList: \n");
head = BubbleSort(head);
Print(head);
printf("\nSortInsert the LinkList: \n");
//测试SortInsert():上面创建链表,输入节点时请注意学号num从小到大的顺序
stu = (struct student *)malloc(LEN);
printf("\nPlease input insert node -- num,score: ");
scanf("%d %f",&stu->num,&stu->score);
head = SortInsert(head,stu);
Print(head);
//销毁链表
DestroyList(head);
printf ("\n");
system ("pause");
}